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EXECUTIVE SUMMARY

The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blend stocks
from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the
state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this
program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and
sustainability of these fuels.

The 2012 feedstock logistics milestone demonstrated that for high-yield areas that minimize the
transportation distances of a low-density, unstable biomass, we could achieve a delivered cost of $35/ton.
Based on current conventional equipment and processes, the 2012 logistics design is able to deliver the
volume of biomass needed to fulfill the 2012 Renewable Fuel Standard’s targets for ethanol. However,
the Renewable Fuel Standard’s volume targets are continuing to increase and are expected to peak in
2022 at 36 billion gallons. Meeting these volume targets and achieving a national-scale biofuels industry
will require expansion of production capacity beyond the 2012 Conventional Feedstock Supply Design
Case to access diverse available feedstocks, regardless of their inherent ability to meet preliminary
biorefinery quality feedstock specifications. Implementation of quality specifications (specs), as outlined
in the 2017 Design Case — “Feedstock Supply System Design and Economics for Conversion of
Lignocellulosic Biomass to Hydrocarbon Fuels” (in progress), requires insertion of deliberate, active
quality controls into the feedstock supply chain, whereas the 2012 Conventional Design only utilizes
passive quality controls.

The three primary requirements that distinguish the 2012 Conventional Design from the 2017 Design
Case are that the latter incorporates (1) adherence to biorefinery quality specifications, (2) expansion
beyond highly productive resource areas, and (3) moving from a single feedstock to blended feedstocks.
The development of definitive feedstock quality specifications is vital to this effort. Development of
specifications is challenging due to the variety of possible biomass materials available, variability within
the biomass resource, multiple specification drivers or standpoints, evolving logistical design options (as
exemplified in the differences between the 2012 and 2017 designs), immaturity of demonstrated
conversion refineries, and lack of robust quality characteristics for specific feedstock resources.
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This report describes the influence of intrinsic (compositional and physical biomass characteristics),
performance (conversion “performance” targets and infrastructure requirement), and secondary
(regulatory requirements) drivers on the development of feedstock specifications. This report reviewed
the established industry standards and specifications, and then proceeded to examine the methodology and
architecture needed to create and support a specification (spec) approach for biomass feedstock materials,
including the following:
e Inherent or performance feedstock quality characteristics for inclusion as a specification
e Integration of preliminary and intermediate specifications that sustain the final conversion
specifications
e Seclection of the appropriate analytical measurement technique to measure the specification
e Incorporation of unambiguous sampling protocols to ensure that feedstock quality
specifications are accurate and representative of the biomass materials tested
e Incorporation of quality assurance procedures to ensure that feedstock quality specifications
are accurate and measurement uncertainty is minimized
e Incorporation of general classification and terminology to ensure that suppliers and end-users
employ unambiguous and definitive descriptions of the feedstock and feedstock
specifications.

Finally, the report reviews four biomass feedstocks; corn stover, switchgrass, Miscanthus, and sorghum.
Compositional analysis information through a number of resources: Idaho National Laboratory Biomass
R&D Resource Library, National Renewable Energy Laboratory (NREL) Biomass Feedstock
Composition and Property Database, Energy Research Centre of the Netherlands (ECN) Phyllis2
Database for Biomass and Waste, and Peer Reviewed Literature Search were reviewed and compiled to
establish practical initial quality attributes for development of feedstock specifications. An attempt was
made to determine for each source whether the feedstock was field (commercially) harvested or if it was
research grade (not mechanically harvested).
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Purpose and Scope

Introduction

The 2012 feedstock logistics milestone demonstrated that for high-yield areas that minimize the
transportation distances of a low-density, unstable biomass, we could achieve a delivered cost of $35/ton.
The 2012 logistics design, based on conventional equipment and processes, is able to deliver the volume
of biomass needed to fulfill the 2012 Renewable Fuel Standard’s volume targets for ethanol. However,
the Renewable Fuel Standard’s volume targets continue to increase until they peak in 2022 at 36 billion
gallons. Meeting these volume targets and achieving a national-scale biofuels industry will require
expansion of production capacity beyond the 2012 Conventional Feedstock Supply Design Case to access
diverse available feedstocks, regardless of their inherent ability to meet preliminary biorefinery quality
feedstock specifications. Implementation of quality specifications (specs), as outlined in the 2017 Design
Case — “Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to
Hydrocarbon Fuels” (in progress), requires insertion of deliberate, active quality controls into the
feedstock supply chain, whereas the 2012 Conventional Design only utilizes passive quality controls. The
three primary requirements that distinguish the 2012 Conventional Design from the 2017 Design Case are
that the latter incorporates (1) adherence to biorefinery quality specifications, (2) expansion beyond
highly productive resource areas, and (3) moving from a single feedstock to blended feedstocks.

Additionally, the concept of dockage fee is introduced in the 2017 Design Case. Dockage involves the
biorefinery penalizing the feedstock supplier for delivery of off-spec feedstock. The dockage fee is
established based on the additional cost the biorefinery incurs to process off-spec feedstock; the dockage
fee is subtracted from the feedstock payment. If the pre-delivery cost of mitigating off-spec feedstock by
the feedstock supplier exceeds the dockage fee, the dockage fee will be accepted; otherwise, the feedstock
supplier must implement corrective strategies to avoid the dockage penalty and remain economically
competitive. For example, if ash removal is required to meet the biorefinery feedstock quality
specification and mitigation within the feedstock supply chain costs the supplier $15/ton, but the
biorefinery is able to mitigate the ash for $10/ton, the feedstock supplier may choose to accept the $10/ton
dockage fee rather than implement ash reduction, for a net $5/ton savings.

The requirements and the dockage concept are discussed in detail in the 2017 Design Case. Feedstock
logistics research aims to reduce delivered cost, improve or preserve feedstock quality, and expand
feedstock access. Strategies to improve logistics operations include (1) organizing logistics in innovative
ways, (2) improving existing operations for efficiency and interaction with other operations, and (3)
implementing new technologies to overcome quality issues. The development of definitive feedstock
quality specifications is vital to this effort. Development of specifications is challenging due to the variety
of possible biomass materials available, variability within the biomass resource, multiple specification
drivers or standpoints, evolving logistical design options (as exemplified in the differences between the
2012 and 2017 designs), and, most importantly, immaturity of the demonstrated conversion refinery. This
document will primarily focus on the development of intrinsic quality specifications, the many factors
that influence the approach and evolution of specifications, and the architecture needed to support a
specification approach.
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Key Results

Spec Development and Evolution

The evolution and development of biomass feedstock quality specifications are challenging given that
they can be driven from multiple drivers or standpoints (i.e., development of a specification builds upon
the intrinsic compositional and physical characteristics of the biomass feedstock or the performance
targets established by the needs and requirements of the refinery process and equipment). The
performance-driven targets are determined based on the requirements of the biomass refinery to meet
conversion “performance” targets and limitations of the system infrastructure (e.g., system requirements
for flowability, minimization of catalysts contamination, etc.). Intrinsic specifications are base on the
inherent characteristics of the feedstock material itself and may include moisture, ash, hemicellulose,
cellulose, elemental and lignin content [1], in addition to physical characteristics (i.e., grind size, particle
size distribution, fines content, flowability, and durability). Specifications are also influenced by a
secondary driver, which may include legal requirements that limit the spread of insect infestations, state
or regional limitations on the import of specific feedstock types that may be deemed invasive plant
species, or the cost to achieve and maintain the specification. The scope of this document is primarily
focused on investigating the underlying architecture that needs to be addressed to support feedstock
specifications for the bioenergy industry and the development of initial intrinsic feedstock specifications
developed through the quality characteristic of the biomass feedstock materials. Prospective feedstock
specifications will be driven by refinery performance targets, intrinsic quality characteristics, and
secondary drivers (see Figure 1). As intrinsic and performance drivers mature, resulting specifications
will become more defined, have less variability, and become more succinct. Future efforts will continue
to clarify the fundamental intrinsic characteristics and identify essential performance parameters that
become dominant for the biofuels industry. Most importantly, specifications must be readily and easily
measured with good accuracy and precision to effectually impact conversion performance; if the
specification cannot be readily and easily measured with good accuracy and precision, the specification is
of no value.
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Figure 1. Evolution of potential specifications driven by intrinsic feedstock characteristics, secondary
drivers, and performance targets; as intrinsic and performance drivers mature, resulting specifications
will become more defined (less variable).

Industry Standards and Specifications

When reviewing the biofuels and feedstock supply industry, there are few examples of established
specifications (specs) for feedstock materials, especially those driven by performance requirements. We
can look to the U.S. Department of Agriculture or the European Commission, in which “standards are
based on measurable attributes that describe the value and utility of the product”
(http://www.gipsa.usda.gov/fgis/standproc/usstands). In this case, a “standard” can be described as a level
of quality or attainment and is accepted as the normal or average for the overall commodity system. The
purpose of this document is not the development of an overall system or commodity standard, but many
of the same aspects and supporting features that are used to define and maintain a standard are applicable
to specifications as well.

U.S. Department of Agriculture Grain Standard

The Grain Standard, for example, includes 12 grains (e.g., corn, flax seed, sorghum, and other grains),
rice, peas, lentils, and beans and is described in the General Provision 810, U.S. Standards for Grain [2].
The specific Standard for Wheat [3] establishes the classes for wheat (i.e., durum wheat, hard red spring
wheat, hard red winter wheat, soft red winter wheat, hard white wheat, soft white wheat, unclassed wheat,
and mixed wheat), multiple grades, and grade requirements. There are five grades (1 through 5) that
incorporate several grading factors, as seen in Table 1.
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Table 1. Grades and grade requirements for all classes of wheat, except mixed wheat [3].

Grading factors Grades U.S. Nos.
1 > | 3 | 4 | s
Minimum pound limits of:
Test weight per bushel
Hard red spring wheat or white club wheat 58.0 57.0 55.0 53.0 50.0
All other classes and subclasses 60.0 58.0 56.0 54.0 51.0
Maximum percent limits of:
Defects:
Damaged kernels
Heat (part of total) 0.2 0.2 0.5 1.0 3.0
Total 2.0 4.0 7.0 10.0 15.0
Foreign material 0.4 0.7 1.3 3.0 5.0
Shrunken and broken kernels 3.0 5.0 8.0 12.0 20.0
Total " 3.0 5.0 8.0 12.0 20.0
Wheat of other classes: %
Contrasting classes 1.0 2.0 3.0 10.0 10.0
Total ¥ 3.0 5.0 10.0 10.0 10.0
Stones 0.1 0.1 0.1 0.1 0.1

Maximum count limits of:

Other material in one kilogram:
Animal filth

Castor beans ! ! ! ! !
Crotalaria seeds ! ! ! ! !
Glass 2 2 2 2 2
0 0 0 0 0
Stones

. 3 3 3 3 3

Unknown foreign substances
4 3 3 3 3 3

Total

Insect-damaged kernels in 100 gram: 4 4 4 4 4
se¢ ged kemets grams 31 31 31 31 31

U.S. sample grade is wheat that:

(a) Does not meet the requirements for U.S. Nos. 1,2, 3,4, or 5

(b) Has a musty, sour, or commercially objectionable foreign odor (except smut or garlic odor)
(c) Is heating or of distinctly low quality.

1/ Includes damaged kernels (total), foreign material, shrunken and broken kernels.

2/ Unclassed wheat of any grade may contain no more than 10.0% of wheat of other classes.

3/ Includes contrasting classes.

4/ Includes any combination of animal filth, castor beans, crotalaria seeds, glass, stones, or unknown foreign substance.

It is important to note that the overall composition of wheat for the various grades is not included in the
standard; this is consistent with the European Committee for Standardization (CEN)/TC 355, “Solid
Biofuel,” discussed below. The focus of the standard is on the outward visual characteristics of wheat,
bulk density, defects, and contamination; however, the standard does present the language for wheat
exchange, providing an unambiguous and definitive description of the commaodity so that producers and
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buyers know what to expect for a specific grade of wheat. Deliverable grades for wheat do include protein
content, as seen in the Minneapolis Grain Exchange [5]. Additionally, protein, falling number (Hagberg),
and single kernel characterization are optional, non-grade-determining tests that may be required by the
customer. The value of the standards, grades, and specifications is that they establish the language for
suppliers, exchange points, and end users, so that throughout the supply chain, each intermediary has an
unambiguous and definitive understanding of the commodity. The incorporation of explicit terminology
and language is vital and is directly applicable to biomass feedstock specifications for a given feedstock
resource, supplier, conversion technology, and biorefinery.

European Union Solid Biofuel Standard

The CEN has established standards for biomass resources, including wood chips, wood pellets and
briquettes, logs, sawdust, and straw bales under CEN/TC 355, “Solid Biofuel.” The standards include
several standard references that describe all forms of solid biofuels within the European Union. The
CEN/TC 355 standard describes the relevant properties of the biofuels, physical and chemical properties
of the fuel, and provides information on the source of the material, consistent with the Grain Standard
(i.e., woody biomass (1); forest, plantation, and other virgin wood (1.1); whole tree without roots (1.1.1);
and short rotation coppice (1.1.1.3)). Again, it is important to note that the overall composition is not
explicitly determined; however, the chemical composition relevant to a ‘Solid Biofuel’ is assumed based
on the source or resource. The purpose of the CEN/TC 355 standard is to ensure that the biomass
feedstock material is eminently usable from one batch to the next and that the feedstock can be used in a
particular piece of equipment and operate according to specification.

The CEN has developed EN 14961-1, “Solid Biofuel — Fuel Specifications and Classes,” that standardizes
solid biomass fuels for energy generation. The EN 14961-1 standard provides the methods to describe the
physical and chemical characteristics of the fuel, as well as information on the material’s source. CEN/TC
355 establishes general classification, terminology (EN 14588:2010), material dimensions, sampling and
preparation procedure, testing and analysis standards, and quality assurance procedures (CEN/TR
15569:2009). Separate product standards have been created for wood chips and hog fuel (EN 14961-1),
wood pellets (EN 14961-2), wood briquettes (EN 14961-3), wood chips for non-industrial use (EN
14961- 4), firewood (EN 14961-5), and non-woody pellets (EN 14961-6). Currently, there are more than
30 CEN standards specific to solid biofuels. Of specific importance for this discussion are the fuel quality
specifications for solid biofuels, which includes moisture content; ash content; bulk density; particle
density; ash melting behavior; mechanical durability; net calorific value; total content of carbon,
hydrogen, and nitrogen; volatile content; water soluble chloride; sodium and potassium content; and
particle size distribution, with pending or postponed standards for bridging properties and impurities,
respectively. Some properties are normative (mandatory), while other properties are informative
(voluntary); the normative properties are as follows:

e Origin and source
e Moisture content

e Ash content

e Other normative properties vary depending on both origin and traded form.

Overall the specifications have been created to establish descriptions and definitions, how different
parameters are determined, and how fuel quality is monitored and maintained through the supply chain.
The standard reference and title for the selected technical standards are listed in Table 2.
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The EN 14961standard provides instructions on how to state the fuel quality by product declaration. The
product declaration is issued by the supplier. An example of a product declaration for woodchips is seen
in Table 3, and it simply describes the quality of the product in accordance to the appropriate part of the
EN 14961 standard. Using the appropriate standard, the normative and informative properties were
established.

Commercial Proprietary Blend

Specifications developed by private industry are often proprietary or not well developed; other refineries
openly state that they “tune their processes to the characteristics of the feedstock materials” (Department
of Energy Peer Review 2013, IBR Overview, MAS10BIOS5, Mascoma, Michael Ladisch). However, Koda
Energy has developed a specific blend of feedstock materials designed to maintain consistent heat output
and limit emissions for their Minneapolis-St. Paul, Minnesota combined heat and power (CHP) plant [6].
Fundamental specifications, as well as segregation specifications, have been developed for the propriety
blending of the feedstock materials for the CHP facility. Feedstock resources include malting residues,
whole tree, oat hulls, corn cobs, aged seed corn, undersized whole grain products, sunflower seed
materials, pallet woods, and other dried agronomic materials. The specifications include grind size and
moisture content; feedstock materials are segregated by material type, ash content, Btu value, and alkali
content per million Btu (i.e., segregation specifications) at the CHP plant. The initial grind size is driven
by two separate requirements: the first is to meet wood quarantine requirements (i.e., reducing the size of
the wood materials to the point that the emerald ash borer cannot survive) and the other is logistical (i.e.,
increasing the hauling capacity from 10 tons to 24 tons per 100-cubic yard semitrailer). Chippers and
single pass driers are used to achieve the final fuel specification of 3/4-in. grind size and less than 14%
moisture content. Satellite biomass preparation facilities (consistent with the depot concept) are utilized
for initial receipt of the biomass materials and initial sizing. Feedstocks are blended at the CHP plant to a
specific ratio to meet the plant combustion needs; the specific ratio in itself can be considered a final
conversion specification.
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Standard
Property Class Propert Title
Reference perty perty
. . Solid biofuels - Determination of moisture content -
- 0
EN 14774-1:2009 Normative YeMoisture Oven dry method. Total moisture: Reference method
. . Solid biofuels - Determination of moisture content -
. 0
EN 14774-2:2009 Normative /eMoisture Oven dry method. Total moisture: Simplified method
Solid biofuels - Determination of moisture content -
EN 14774-3:2009 Normative %Moisture Oven dry method. Moisture in general analysis
sample
EN 14775:2009 Normative %Ash Solid biofuels - Determination of ash content
EN 14918:2009 Informative Calorific value | Solid biofuels - Determination of calorific value
EN 15103:2009 Informative Bulk density Solid biofuels - Determination of bulk density
Normative®/ Solid biofuels - Determination of total content of
EN 15104:2011 . C,H,N carbon, hydrogen and nitrogen - Instrumental
Informative
methods
- . i .
EN 15105:2011 Normatlv.e / Cl, Na, K Sohd'blofuel_s Determmatlgn of the water soluble
Informative chloride, sodium and potassium content
EN 15148:2009 Informative Volatiles Sohd.blofuels - Determination of the content of
volatile matter
Solid biofuels - Determination of particle size
EN 15149-1:2010 Normative Particle size distribution - Part 1: Oscillating screen method using
sieve apertures of 1 mm and above
Solid biofuels - Determination of particle size
EN 15149-2:2010 Normative Particle size distribution - Part 2: Vibrating screen method using
sieve apertures of 3,15 mm and below
EN 15150:2011 Informative Particle density | Solid biofuels - Determination of particle density
) . i Solid biofuels - Determination of mechanical
EN'15210-1:2009 Informative Durability durability of pellets and briquettes - Part 1: Pellets
. . . Solid biofuels - Determination of mechanical
EN 15210-2:2010 Informative Durability durability of pellets and briquettes - Part 2: Briquettes
Solid biofuels - Method for the determination of ash
EN 15370:2006 Informative Ash behavior | melting behavior - Part 1: Characteristic temperatures
method
) . . Solid biofuels - Determination of major elements -
N 15290:2011 Informative Major elements Al Ca, Fe, Mg, P, K, Si, Na and Ti
Solid biofuels - Determination of minor elements -
EN 15297:2011 Informative Minor elements | As, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, V and

/n

*Normative for chemically treated biomass; informative for all fuels that are not chemically treated.
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Table 3. Example of the product declaration for wood chips as defined by EN 14961-1.

Product Declaration — Wood Chips

Supplier Name

PP Address
Quality Assurance Standard EN 15234-1
Country of Origin Country
Traded Form Wood chips

Normative Properties — EN 14961-1

C ok Mixture of stem wood from broadleaf and

Origin

coniferous trees (1.1.3.1,1.1.3.2)

. . £
Particle size , P, mm

P45A

Moisture content, M, w-%

M35

Ash content, w-% of dry matter

AlS

Informative Properties — EN 14961-1

Net calorific value as received, Q, MJ/kg Ql1.5
Bulk density, BD, kg/m’ BD200
Chemical treatment No

*Classification of woody biomass using EN 14961-1 standard.

**Particle size is defined by EN 15149-1 (Oscillating screen method); P45A is defined as 75% w-% of main
fraction is 8 <P <45 mm, fines fraction (w-%) is < 8%, coarse fraction is < 6% > 63 mm and max. 3.5% > 100mm,
all < 120 mm, cross sectional area of the oversized particle < 5 cnr’.

Evolution of Specifications

The examples above provide insight into the methodology and architecture needed to create and support a
specification (spec) approach for biomass feedstock materials. For any specification approach to be
functional, regardless of the conversion technology, the specification must incorporate the architecture
and the methodology to support the final conversion specification and any supporting intermediate
specifications. Issues to be considered include the following:

e  What inherent or performance feedstock quality characteristics need to be included as a
specification? For a particular conversion technology or commercial process the specification
class will most likely be different (i.e., C, N, H, S, O content is of importance for thermochemical
processes, whereas carbohydrate content is most likely of primary importance to biochemical
sugars to hydrocarbons processes).

o %Moisture

o  %Ash

o Unknown foreign material content
o %Carbohydrate

o Recalcitrance (convertibility)
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Inhibitor content

%Lignin

Elemental content (e.g., Cl, P, Ca, Si, and S)
Grind size

Particle size distribution

Flowability

Insecticide content.'

O O O O O O O

e Integration of preliminary and intermediate specifications that sustain the final conversion
specifications, as well as enhance logistical operations.
o Field-side spec
Format spec
Exchange-point spec
Intermediate spec
Grades
Final conversion spec.

O O O O O

e Selection of the appropriate analytical measurement technique to measure the specification in the
field or exchange point, at the processing depot, and ultimately at the throat of the biorefinery.
Cost implications, ease of use, and usability influence the choice of the analytical measurement
technique.

o Gravimetric techniques

o Spectral approaches

o Semi-quantitative screening techniques
o Full chemical analysis.

e Incorporation of unambiguous sampling protocols to ensure that feedstock quality specifications
are accurate and representative of the biomass materials tested. Analytical results are heavily
impacted by sampling and sample preparation due to the high variability of the feedstock resource

[7].

e Incorporation of standard methods and quality assurance procedures to ensure that feedstock
quality specifications are accurate and measurement uncertainty is minimized and to ensure that
the biomass feedstock material is eminently usable from one batch to the next.

e Incorporation of general classification and terminology to ensure that suppliers and end users
employ unambiguous and definitive descriptions of the feedstock and feedstock specifications.

As stated above, the evolution and development of biomass feedstock specifications is challenging due to
the variety of possible biomass materials and formats available, variability within the biomass resource,
multiple specification drivers or standpoints, evolving logistical design options, and immaturity of

! Persistent herbicides in compost caused damage to a variety of garden plants as described in “Unraveling the Maze
of Persistent Herbicides in Compost” [Nora Goldstein, “Unraveling the Maze of Persistent Herbicides in
Compost,” BioCycle Magazine, Oct. 2013, 17-35, Print]
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demonstrated conversion refineries. Additionally, the specification approach requires a robust and
well-developed administrative infrastructure to be practical, otherwise gaps in the specification
architecture will allow the specifications to become ambiguous and ineffectual.

Those feedstock characteristics that most likely will evolve initially into a specification are general in
nature and applicable to multiple conversion technologies. A good example of a general feedstock
characteristic is grind or particle size (particle size distribution). The Biomass Feedstock Process
Demonstration Unit routinely produces bulk quantities of feedstock materials for end users at multiple
grind sizes, typically 1/2 to 2-in. screen size grinds. The particle size distribution (including fines content)
is a concern for specific end users and can be readily controlled using specific screen sizes in combination
with specific grinders or fractional milling. Fractional milling’s logistical design incorporates a
separations step between the first and second-stage grinding operations to remove material that already
meets the size specification and only passes the oversized material on for further size reduction, as
discussed the 2017 Design Case [7]. Attributes (such as grind size, which is relatively easily controlled
through logistical preprocessing) can readily be developed into a specification. The specification can be
as simple as follows:

< 1/2-in. grind using a Bliss hammer mill
< 3/4-in. grind using a Bliss hammer mill

< 1-in. grind using a Bliss hammer mill.

Or it can progress to a more detailed particle specification as developed in EN 14961-1, where minimum
fines and coarse fractions are explicitly defined as seen in Table 4.

The evolution of a specification will also be directly influenced by the cost, level of effort, and difficulty
to maintain the specification. The maintenance of a specification expressly deals with the complexity of
the specification’s requirements, including the specificity (precision and detail) of the specification, the
overall ease of determining the specification, analytical methodology, and sampling requirements. Most
importantly, can the needed specification be readily and easily measured with good accuracy and
precision to effectually impact the conversion performance? If it cannot, the specification is of little or no
value.

Feedstock ash content, for example, represents an additional, variable, operational cost to the biological
conversion refinery because it reduces pretreatment efficacy [8], increases wear in handling and feeding
systems, increases water treatment cost, and accumulates as a waste stream that requires treatment.
Bonner et al. [7] estimated the cost of biomass ash above and beyond a 5% feedstock specification for a
sugars/fermentation pathway to ethanol, considering both the additional replacement costs and additional
disposal costs. Their analysis showed that these costs ranged from $4.88 to $20.23/dry T for corn stover
ash levels, ranging from 10 to 25%, respectively. Two-thirds of the cost increase was due to feedstock
replacement costs (carbohydrate content) to maintain the required supply of convertible biomass to the
biorefinery, and one-third of the increase was due to the biorefinery’s ash disposal costs. Therefore, the
inclusion of an ash specification (%Ash) for biological conversion of sugars to hydrocarbons is
appropriate.
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Table 4. Particle size specification for wood chips [EN 14961-1].

Particle Size — Wood Chips

Property Class: Normative

Standard Reference: EN 14961-1

Class Minimum 75-w% in Fines Fraction, Coarse Fraction. w-%
Main Fraction, mm® | w-% (<3,15 mm) P e
P16A 3.15<P <16 mm <12% <3% >16 mm and all 30 mm°®
P16 B 3.15<P<16 mm <12% <3% >45 mm and all 120mm°
o/ b < 6% >63 mm, and max. 3,5
P4SA 8<P=45mm <8% %> 100 mm, all <120 mm
o, b < 6% > 63 mm, and max. 3,5
P4sB §<P<45mm ~8% % > 100 mm all <350 mm
P63 8 <P <63 mm <6%"° < 6% > 100 mm, and all <350 mm
P100 16 <P <100 mm <49%° < 6% > 200 mm, and all <350 mm

* The numerical values (P-class) for dimension refer to the particle sizes passing through the mentioned round hole sieve size
according to standard EN 15149-1.

® Main fraction for P45B is 3.15< P < 45 mm, for P63 is 3.15< P < 63 mm, and for P100 is 3.15< P <100 mm, and the amount
of fines can be a maximum 25 w-% if raw material is logging residue, which includes thin particles like branches, needles, or
leaves.

¢ The cross-sectional area of the oversized particles shall be P16<1 cm?, for P45 < 5 cm?, for P63< 10

cm?, and P100 < 10 cm?.

Unfortunately, ash content can vary greatly. Table 5 shows the mean and range of ash contents for
selected feedstocks and includes the effects of physiological ash (ash inherent in the biomass) and soil
contamination. Research to-date has shown herbaceous feedstock ash content to be highly dependent on
harvest equipment [9]. Traditional multi-pass corn stover bales from Stevens County, Kansas, were found
to range from 10 to 25% ash by mass [7]. An additional complication of establishing an ash spec is the
high spatial variability of ash within a bale. Bonner et al. [7] made this important conclusion from the
Stevens County, Kansas field study, where the location of ash in the corn stover bales did not appear to
follow any significant pattern, supporting the need for random sampling and compositing to obtain
representative bulk ash content. For a 160-acre “quarter section” field, the research supports taking three
randomly collected cores samples and compositing from each truckload of baled biomass, with an
estimated 11 trucks total. The eleven measured ash values are then averaged to calculate a single mean
bulk ash content for the field at a 95% confidence interval of 1.5% (this is assuming no analytical error in
the ash measurement). Establishing %Ash specifications for baled corn stover and herbaceous material
similar to the grades established in the EN 14961-1 woody ash content standard < 0.5%, < 0.7%, < 1.0%,
<1.5%, £3.0%, <5.0%, < 7.0%, < 10.0%, and > 10.0% is not viable because the sampling error at the
95% confidence interval is greater than the initial 0.2% grade interval (interval for 0.5% and 0.7%) cited.
The analytical error for the gravimetric determination of ash is less than 0.15% relative standard
deviations (RSD), is achievable for a uniform sample (INL Biomass Characterization Laboratory,
Reported RSD’s for NIST Reference Material 8491 Sugarcane Bagasse %Ash: ASTM Standard Test
Method D3174-04), and is well below the sampling error observed; therefore, the most crucial aspect of
determining the ash content and specifying an ash spec is obtaining representative samples.
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Table 5. Mean total ash values and ranges for selected lignocellulosic biomass
feedstocks [9].

Feedstock Average Ash (%)* Reported Range (%)
Corn Cob 2.9 (13) 1.0-8.8
Corn Stover 6.6 (28) 2.9-11.4
Miscanthus Straw 3.3 (13) 1.1-9.3
Reed Canary Grass 6.7 (11) 3.0-9.2
Rice Straw 17.5 (22) 7.6-25.5
Sorghum Straw 6.6 (5) 4.7-8.7
Sugarcane Bagasse 5.6 (27) 1.0-15.2
Switchgrass Straw 5.8(21) 2.7-10.6
Wheat Straw 8.0 (50) 3.5-22.8

* Mean value presented with number of reported samples in parenthesis.

Consistent and predictable conversion of cellulosic biomass to fuels by a biochemical conversion facility
requires that the feedstock’s structural carbohydrates are delivered at a known quantity and quality. The
assumed feedstock specifications shown in Table 6 indicate that a minimum 59% total structural
carbohydrate content is required for the biorefinery to meet the conversion yield targets. In developing a
%Carbohydrate spec, an important question is at what point within the logistical process does the
determination of carbohydrate content provide benefit? As seen in Figure 2, there are several locations
within the logistical process where measurement of carbohydrate content may be appropriate; however, at
what point is a measurement (corresponding specification) cost effective and does an initial measurement
effectually impact the conversion performance. One approach, consistent with the sourcing of woody
materials in the Standard for Wheat and EN 14961 Standard, used the ash content (%ash) as the
exchange-point specification and assumes that the carbohydrate content is consistent with typical regional
or supplier (source) composition. That is, for a typical multi-pass harvested corn stover (see Table 7), the
%Carbohydrate and %Ash are assumed to 58% and 7%, respectively; as ash content increases or
decreases, the carbohydrate content decreases or increases correspondingly. This removes the burden and
cost of determining carbohydrate content in field applications. Measurement of carbohydrate content is
needed as the feedstock moves through the logistical chain and undergoes preprocessing, chemical
preconversion, and formulation or blending (modification of carbohydrate content and ash content) to
meet the final refinery specifications. At the points within the logistical process where the carbohydrate
content is still variable and quality cannot be controlled, %carbohydrate monitoring is justified.

Table 6. Delivered corn stover composition assumptions [10].

Composition
Component (dry wt%)
Glucan 35.05
Xylan 19.53
Lignin 15.76
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Ash? 4.93
Acetate” 1.81
Protein 3.10
Extractives 14.65
Arabinan 2.38
Galactan 1.43
Mannan 0.60
Sucrose 0.77
Total structural carbohydrate 58.99
Total structural carbohydrate + sucrose 59.76
Moisture (bulk wt%) 20.0

*Future studies will break down ash constituency.
P Represents acetyl groups present in the hemicellulose polymer converted to
acetic acid in pretreatment.

Regrettably, the determination of carbohydrate content is not as simple and straight forward as the
gravimetric determination of ash content. Conventional analytical methods® for the characterization of
feedstock materials require transfer of samples to an analytical laboratory; analysis is both costly and time
intensive. Multiply that by several hundred samples per logistical operation and then again by many
harvest resources; this results in a significant number of samples that well exceed most feedstock resource
budgets for characterization. A rapid compositional analysis method using near-infrared
spectroscopy/partial least squares multivariate modeling (NIR/PLS) [12, 13] provides the opportunity to
rapidly evaluate the chemical composition of feedstock intermediates during preprocessing.
Unfortunately, the methodology has not been readily adapted to field-measurements or preprocessing
operations, but is routinely used for quality control in the food [14], beverage [15], cosmetics [16],
pharmaceutical [17], and feed and forage testing industries [18], and is routinely used for the rapid
characterization of biomass feedstock materials in the laboratory [12],[13]. Combined standard deviations
of less than 8% are anticipated for online processing [19]. An RSD of 1.3 to 5.7% for crude protein and
ADF and NDF measurements [ 18] have been demonstrated for feed and forage testing. When good
laboratory methods are followed, RSDs improve (1.3 to 1.7%). Additional insight is provided by
examining the raw and corrected spectra of 91 individual spectra of wheat straw samples (Appendix E).
RSDs of less than 10% are observed at any wavelength of the raw spectra that correlates to analytes of
interest; deviations of up to 10% are fairly common for the -OH absorbance from water, alcohols, and any
other carbon-OH species. This shows the strong impact of moisture content in the sample or sample
environment on the resulting measured spectra. The particle size of the sample also has a significant
effect on the NIR spectrum; particle size impacts the amount of radiation scattered by the sample
(Jorgensen 2000). Large particles result in a higher absorbance, thereby, they have an additive effect on
the spectra; strong absorbers show more change with particle size relative to weak absorbers. Barnes et al.
succinctly state that sample particle size accounts for the majority of the variance, while variance due to
chemical composition is small [20]. Each of these factors will have a strong impact on measurements of

2 RSD’s of 1-3% are reported for glucan, xylan, lignin, extractives, and total component closure with the other minor
components showing 4—10% RSD using conventional wet chemical techniques (NREL Laboratory Analytical Procedures)
[11. Templeton, D.W., et al., Compositional Analysis of Lignocellulosic Feedstocks. 2. Method Uncertainties. Journal of
Agricultural and Food Chemistry, 2010. 58(16): p. 9054-9062.
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biomass in the field. The cost of instrumentation, laboratory costs, ease of use, scientific labor costs, and
maintaining models (NIR/PLS model) and appropriate standards must also be considered when
developing specifications.

Input Specification Stored
Quality for Multiple Intermediate
Characteristics Formats Specification
Harvest & 7_-7 Storage &
Production > : > A
oductio Collection Queuing
Depot Spec.
Blending Delivery
Specification Specification
4
Depot Terminal
Preprocessing Network
Final
Conversion
Specification
Conversion
Refinery

Figure 2. Example of possible intermediate specifications and the integration of preliminary and
intermediate specifications that sustain the final conversion specifications within the logistical process.

Key Results

Intrinsic Feedstock Specifications

Feedstock Specifications Review

Four biomass feedstocks (i.e., corn stover, switchgrass, Miscanthus, and sorghum) were chosen for
review. Compositional analysis information through a number of resources were reviewed and compiled
to establish practical initial quality attributes for development of feedstock specifications: INL Biomass
Research and Development (R&D) Resource Library, National Renewable Energy Laboratory (NREL)
Biomass Feedstock Composition and Property Database, Energy Research Centre of the Netherlands
(ECN) Phyllis2 Database for Biomass and Waste, and Peer Reviewed Literature Search. An attempt was
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made to determine, for each source, whether the feedstock was field (commercially) harvested or if it was
research grade (not mechanically harvested). The compilation tables of these research methods are located
in Appendix A (corn stover), Appendix B (switchgrass), Appendix C (Miscanthus), and Appendix D
(sorghum). The compilation results from these resources are shown in Tables 7 through 10. Tables 7
through 10 are the mean results from the four different resources used to determine composition for the
feedstocks of interest. They have been split into field harvest and research grade/unknown.

Methods

Search Information

Four feedstocks were selected for the database and literature search, including corn stover, switchgrass,
Miscanthus, and sorghum. Only untreated samples with chemical composition were compiled. Specific
parameters of interest were structural sugars (i.e., glucan, xylan, galactan, arabinan, and mannan),
cellulose, hemicellulose, lignin (i.e., klason, acid soluble, and acid insoluble), and ash. Samples were
broken into three categories: (1) field harvest, (2) unknown, and (3) research grade. Samples were
considered field harvested if there were some details indicating the samples were harvested with
large-scale equipment, and research grade samples were collected by hand. Samples were categorized as
unknown if it could not be determined if the samples were field harvested or research grade. Three
biomass databases and peer-reviewed literature were used for the analysis search.

INL Biomass Resource Library

Biomass samples that were treated in any way were excluded from the report. Samples were categorized
as field harvested if they were stored in bale format and research grade samples had no large harvesting
equipment or bale format included in the sample information. Also, personal conversations with the
librarian for the INL Biomass Library and/or principal investigators for specific projects were used to
correctly categorize samples as field harvest or research grade.

NREL Biomass Feedstock Composition and Property Database

The NREL database was searched for chemical composition data from untreated samples of the four
selected feedstocks. No information was available for Miscanthus. The database entries are from various
sources, but minimal harvest information was output with each entry. The sources were not individually
investigated for harvest information. If a bale format was listed, samples were considered field harvested.
Most samples were considered unknown (i.e., not research grade or field harvested).

ECN Phyllis2 Database for Biomass and Waste

The Phyllis2 database was searched for chemical composition data for untreated samples for the four
selected feedstocks. The database was not searchable by harvest method; therefore, all samples from the
Phyllis2 database were considered unknown (i.e., not research grade or field harvested).

Peer-Reviewed Literature Search

Google Scholar and Web of Science were used to find peer-reviewed articles related to biomass feedstock
chemical composition. A thorough search was completed for field-harvested biomass and articles were
included if the methods section explicitly stated that the biomass in the study was from a
commercial-scale field or that the material was from a bale or other large-scale harvesting process.
Articles were included as research grade materials if the methods explicitly stated that the biomass was
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harvested by hand. If it was not clear from the methods in the article whether the material was field
harvested or research grade, it was considered unknown.

Intrinsic Feedstock Specifications

The evolution and development of feedstock specifications will initially mature from solid analytical data
for the feedstock and quality characteristics of interest, as well as defined performance and secondary
drivers. For the purposes of this document, the performance drivers are not included at this time; only the
intrinsic characteristics of the biomass feedstocks are discussed. Unfortunately, as seen in the data, not all
analytical information (e.g., %H,0, %Ash, %Carbohydrate, recalcitrance (convertibility), inhibitor
content, elemental content, and particle size distribution) is readily available or complete for each sample
set, with few comprehensive data sets, which clearly delineate the plant species, method of harvest (as
shown previously, ash concentrations can vary, impacting carbohydrate content), or method of storage.
The method of storage directly impacts dry matter loss and can decrease convertibility [21]. Nonetheless,
the compilation of data does provide insight into some fundamental quality characteristics that are
consistent with other assumptions and targeted research.

Mean compositional values for corn stover from four sources for research grade/unknown material is
58.5% for the combined sugars content and 64.0% for combined cellulose/hemicellulose content, with an
overall mean of 61% (mean sugar + cellulose/hemicellulose content). Respective mean ash content is
6.1%. Mean compositional values for corn stover from four sources for field-harvested material is 59.9%
for the combined sugars content and 58.3% for combined cellulose/hemicellulose content, with a overall
mean of 59% for field-harvested corn stover materials. Respective mean ash content is 7.2%.

Mean compositional values for switchgrass from four sources for research grade/unknown material is
61.2% for the combined sugars content and 64.1% for combined cellulose/hemicellulose content, with an
overall mean of 63%. Respective mean ash content is 7.0%. Mean compositional values for corn stover
from four sources for field-harvested material is 62.1% for the combined sugars content and 62.0% for
combined cellulose/hemicellulose content, with a overall mean of 62% for field-harvested switchgrass.
Respective mean ash content is 5.6%.

Mean compositional values for Miscanthus from four sources for research grade/unknown material is
64.2% for the combined sugars content and 70.5% for combined cellulose/hemicellulose content, with an
overall mean of 67%. Respective mean ash content is 8.3%. Mean compositional values for Miscanthus
from four sources for field-harvested material is 63.6% for the combined sugars content. Respective mean
ash content is 5.0%.

Mean compositional values for sorghum from four sources for research grade/unknown material is 54.2%
for the combined sugars content and 49.9.7% for combined cellulose/hemicellulose content, with an
overall mean of 52%. Respective mean ash content is 5.1%. Mean compositional values for sorghum from
four sources for field-harvested material is 59.3% for the combined sugars content and 51.7% for
combined cellulose/hemicellulose content, with a overall mean of 56% for field-harvested sorghum
materials. Respective mean ash content is 12.0%.
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Corn stover has the most comprehensive data sets available and the overall mean carbohydrate content of
59% determined for field-harvested corn stover is consistent with initial assumptions (as seen in Table 6).
The mean ash content of 7% for field-harvested corn stover is consistent with observed data (see Table 5),
but exceeds the assumed ash specification by 2%. This variability can be expected because the impact of
collection equipment on ash variability is significant [9]. Logistics solutions, including single-pass
harvesting, are being investigated to reduce excessive feedstock ash content attributed to introduced ash
that results from entrainment of soil in the biomass during harvest. Development of single-pass harvest
systems will help mitigate this issue. Comprehensive data on single-pass harvesting systems is limited.
Preliminary data for single-pass corn stover indicates that ash content below 3.5% and a total
carbohydrate content of 66% is achievable [22]. Further harvest studies and characterization of single-
pass baled corn stover is needed to determine more comprehensive values. Results from multi-pass
harvest studies and characterization of multi-pass baled corn stover using best harvesting practices are
forthcoming and should provide clarification to intrinsic corn stover specifications for multi-pass
harvesting.

Although there is limited large-scale harvesting and storage experience with switchgrass for bioenergy
production [23], there are considerable data sets available for review. The overall mean carbohydrate
content of 62% and 63% determined for research grade/unknown material and field-harvested
switchgrass, respectively, should be considered preliminary as feedstock logistics and refinery demand
will influence optimal harvesting operations. Wyman et al. [23] indicated that compositional differences
are more strongly dependent on harvesting time than variety. The mean ash composition of 7.0% and
5.6% determined for the research grade/unknown and field-harvested switchgrass, respectively, supports
that these values are preliminary as well, because the ash content for the research/unknown materials is
higher than the field-harvested material.

The available data sets for Miscanthus and sorghum are more limited and efforts are currently ongoing to
establish comprehensive compositional data for these feedstocks [24]. The overall mean carbohydrate
content of 67% for research grade/unknown Miscanthus and the mean compositional values of 63.6% for
the combined sugars content for the field-harvested Miscanthus are preliminary due to the lack of
comprehensive data. Liu et al.[25] showed that four Miscanthus species displayed different plant structure
compositions, biomass yields, and chemical composition. The nursery-grown, hand-harvested ash content
for the four Miscanthus species varied from 3.1 to 6.0% and the combined glucan, xylan, and araban
content varied from 56 to 66%. Therefore, initial compositional specifications should be created for each
Miscanthus species, or at a minimum for those Miscanthus species with similar chemical compositions, as
data becomes available. The compositional data for sorghum are disparate and incorporate both forage
and sweet sorghum species; field harvest compositional data are limited. The overall mean carbohydrate
content of 52% and 56% was determined for research grade/unknown sorghum material and field-
harvested sorghum, respectively; ash content for the limited harvest data was 12% and the ash content of
the research grade/unknown material was 5%. This indicates that introduced ash that results from
entrainment of soil in the biomass during harvest is contributing to the %total ash in the field-harvested
sorghum data. William et al. [26] determined that the field dried, multi-pass carbohydrate content of
sweet sorghum and forage sorghum to be 55% and 60%, respectively; total ash content was not
determined. As with Miscanthus, the initial sorghum compositional specifications should be created for
sweet and forage sorghum as data become available. Currently, the data provide a rough quality
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specification for each of these feedstocks; additional compositional data are needed to establish a more
robust intrinsic specification for these feedstocks.
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